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Electrohydrodynamically (EHD) driven capillary jets are analysed in this work in
the parametrical limit of negligible charge relaxation effects, i.e. when the electric
relaxation time of the liquid is small compared to the hydrodynamic times. This
regime can be found in the electrospraying of liquids when Taylor’s charged capillary
jets are formed in a steady regime. A quasi-one-dimensional EHD model comprising
temporal balance equations of mass, momentum, charge, the capillary balance across
the surface, and the inner and outer electric fields equations is presented. The steady
forms of the temporal equations take into account surface charge convection as well
as Ohmic bulk conduction, inner and outer electric field equations, momentum and
pressure balances. Other existing models are also compared. The propagation speed
of surface disturbances is obtained using classical techniques. It is shown here that,
in contrast with previous models, surface charge convection provokes a difference
between the upstream and the downstream wave speed values, the upstream wave
speed, to some extent, being delayed. Subcritical, supercritical and convectively
unstable regions are then identified. The supercritical nature of the microjets emitted
from Taylor’s cones is highlighted, and the point where the jet switches from a stable
to a convectively unstable regime (i.e. where the propagation speed of perturbations
become zero) is identified. The electric current carried by those jets is an eigenvalue
of the problem, almost independent of the boundary conditions downstream, in an
analogous way to the gas flow in convergent–divergent nozzles exiting into very low
pressure. The EHD model is applied to an experiment and the relevant physical
quantities of the phenomenon are obtained. The EHD hypotheses of the model are
then checked and confirmed within the limits of the one-dimensional assumptions.

1. Introduction
Electrohydrodynamically (EHD) driven capillary jets and their stability has at-

tracted the attention of many investigators since the first works on the stability of
capillary jets (Rayleigh 1878; Weber 1931). This kind of liquid flow appears when
strong electric fields are applied to liquid masses, or when a liquid is injected under
the effect of an external electric field. The eventual breakup of these liquid jets into
droplets, which usually have diameters several orders of magnitude smaller than the
droplets from uncharged jet breakup, was essentially the objective of their analysis.

The electrohydrodynamic atomization of liquids (or electrospray) actually comprises
multidisciplinary aspects from electrostatics, electrokinetics, fluid dynamics, particle
dynamics, etc. From the pioneering presentations of Zeleny (1914, 1915, 1917), and
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Vonnegut & Neubauer (1952), many experimental works have been devoted to the
determination of the physical laws relating the liquid properties and flow rate to the
size and charge of the emitted droplets (Hendricks 1962, 1964; Pfeifer & Hendricks
1967, 1968; Jones & Thong 1971; Hayati, Bailey & Tadros 1986a, b; Cloupeau &
Prunet-Foch 1989, 1990; Tang & Kebarle 1991; Fernández de la Mora & Loscertales
1994; Gañán-Calvo, Dávila & Barrero 1997, among many others) as well as to
describing the nature and structure of the resulting spray (Dunn & Snarski 1992;
Gomez & Tang 1994; Tang & Gomez 1994; Gañán-Calvo et al. 1994, among
others).

Melcher & Warren (1971) analysed the electrohydrodynamics of a steady, semi-
insulating liquid jet pulled down under the action of a tangential electric field
and gravity, in order to supply an analytical model to understand the experiments
performed by Taylor (1969). In that work, they introduced realistic assumptions
related to the electrohydrodynamics of the microjet in electrosprays (e.g. the relaxation
time of liquid charges is small compared to hydrodynamic residence times), wrote
down the appropriate axial momentum and normal force balance, etc. However, they
did not arrive at significant scaling laws for the emitted current or droplet size since,
to close their model, Melcher & Warren artificially imposed an external linear electric
field instead of scaling the axial electric field as that due to the accelerating jet itself
(self-induction). Furthermore, they did not retain the convective terms in the total
electric current carried by the jet. Actually, in electrohydrodynamically driven jets
which eventually break up into droplets and form a charged spray this current is
not a parameter, but on the contrary, it is a result for the given control parameters
(potential difference and liquid flow rate). However, leaving aside its application to
the electrospray phenomenon, their EHD model was physically very rich since they
discovered the existence of EHD subcritical and supercritical flow regimes. In fact,
the breakup point of the jet has no influence upstream if the jet flow is supercritical,
and the system may exhibit a steady-state regime if the boundary conditions upstream
of the jet are steady. They also obtained a fundamental surface charge conservation
equation in electrohydrodynamic spraying (equation (9), in their work). Although the
work by Melcher & Warren may be considered a major cornerstone of electrospray
science, it seems that not enough attention has been devoted to their analysis in this
field.

More recently, Turnbull (1989) presented an electrohydrodynamic model for the
emitted jet in the limits of both perfectly insulating and perfectly conducting liquids.
He obtained the scaling of the jet radius, leaving the emitted current as an input.
In an approximate solution of his equations, he assumed (p. 703, 2nd paragraph)
a negligible surface tension since it would have “not reached its equilibrium value”
along the jet. This assumption, although not entirely justified for the experimental
conditions in most electrospray measurements reported in the literature, has also
been considered very recently by Mestel (1994) among other theoretical hypotheses.
Mestel performed a stability analysis of a charged jet subjected to a given axial
electric field, undergoing small perturbations, assuming a finite electrical relaxation
time and a high-Reynolds-number model for the resulting perturbation motions. His
analysis covers a wide range of parametrical situations, among which his limit of a
low tangential field is suggested as the most plausible one from the point of view
of its application to the cone–jet mode. In fact, this is essentially correct as the
experiments show. In these conditions, he shows that the jet is stabilized by the
low shear stress electrically exerted on its surface, which is compatible with most
experimental observations.
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This work is devoted to the analysis of electrohydrodynamically driven jets in the
parametrical limits of negligible charge relaxation effects, i.e. when charge relaxation
time εi/K is small compared to other times of interest in the problem, εi and K being
the electrical permittivity and conductivity of the liquid, respectively. This limit holds
for electrospraying in the steady jet regime for liquid flow rates large compared to
the minimum one for which the jet is steady. If the liquid is issuing from a needle
of a small enough diameter, and the flow rate is large, the microjet is almost quasi-
unidirectional from the beginning. If, on the contrary, the liquid flow rate is small
and the needle’s diameter is moderate, the liquid is usually emitted in cone–jet mode
(Cloupeau & Prunet-Foch 1989); in this regime, there is a region (the cone) which is
essentially electrostatic, which breaks down abruptly at its apex, forming a microjet
with markedly different characteristics (not negligible tangential electric field on the
surface, large liquid velocities, etc.) from those of the cone. To analyse such a flow, the
capillary forces, hydrodynamic pressure, electric forces, viscous forces, and momentum
of the liquid are retained in the normal and tangential EHD balance equations. In
addition, both the surface convection and the bulk conduction currents are taken into
account in the total emitted current. Following Melcher & Warren’s work, the flow is
analysed here in terms of the propagation speed of surface disturbances. In §2, two
different kinds of external boundary conditions, leading to different solutions of the
external electric field and resulting flow characteristics, are also analysed. Retaining
the self–induction effects, it is shown that the microjet may undergo a transition
from a subcritical regime (upstream) to a supercritical one (downstream), which is
forbidden for jets with no self-induction (Melcher & Warren’s ones).

The quasi-unidirectional EHD model presented here is applied to an experiment
in §3, and the hypotheses made are checked. Based on the facts revealed by this
experiment, it is suggested that the conspicuous stability and steadiness of the conical
meniscus and emitted microjet in the parametrical limits of stability for the steady
cone–jet mode is related to the effect of a supercritical shield supplied by the microjet
behind the point where the propagation speed of perturbations becomes imaginary
(i.e. where the jet becomes convectively unstable). From this point, the small
perturbations grow exponentially, leading eventually to the jet breakup. In addition,
all other relevant physical quantities such as the normal and tangential electric fields,
electrostatic forces, polarization forces, pressure, liquid inertia, Ohmic bulk conduction
current, surface charge advection current, etc., are experimentally quantified within
the errors of the quasi-one-dimensional model, allowing for a direct verification of
the electrohydrodynamical hypotheses.

1.1. Preliminary notes and limits of validity of the theory

If the liquid has a sufficiently high electrical conductivity or, in other words, a sufficient
concentration of charge carriers with large enough electrical mobility compared to
other velocities of the problem, there is a layer in the liquid at the liquid–gas interface
whose charge distribution in the direction normal to the interface is given by the
electrochemical equilibrium of the charge carriers present in the liquid, under the effect
of the electric fields. When the charge carriers are ions, this charge distribution is given
by the well-known Poisson–Boltzmann equation (see, for example, Probstein 1989,
p. 100), and its thickness is of the order of a Debye length in a perfect equilibrium
state. If the liquid is slowly flowing, in a Lagrangian framework (following the liquid
particles) the surface charge layer is always in a quasi-equilibrium state whenever
mechanical and geometrical variations take place slowly enough to allow for the
surface charge layer to ‘accommodate’ almost instantaneously to the slow changes



168 A. M. Gañán-Calvo

occurring in the flow (like in the local thermodynamic equilibrium hypothesis). This is
the limit scenario considered in the present work, which can be referred to as the limit
of negligible charge relaxation effects. In this case, in terms of characteristic times,
the electric relaxation time βεo/K is small compared to other times of interest, say
the hydrodynamic residence time of a liquid particle in the jet to ∼ L/U ∼ LR2

j /Q,
where β, K , L, Rj , U and Q are the liquid to the vacuum electrical permittivities ratio,
the liquid electrical conductivity, a characteristic jet length (say, from the cone’s apex
down to the breakup point), a jet diameter (say, close to the breakup point, where it
is minimum), the typical liquid axial velocity, and the liquid flow rate, respectively.
That is,

βεoQ

KR2
j L
� 1. (1.1)

The most important fact related to the requirement of negligible charge relaxation
effects is that the inner, normal electric field multiplied by β should be very small
compared to the outer, normal electric field (Eo

n � βEi
n) (see Probstein 1989). In fact,

for a perfect equilibrium state, the inner electric field becomes exactly zero. This is
the case of a perfectly quiescent liquid (no flow) with a liquid–gas interface under the
influence of an external, constant electric field, or the case of a perfectly conducting
liquid. It is precisely the existence of a tangential electric field on the jet’s surface that
stops it being in a ‘perfect’ equilibrium: it provokes a progressive acceleration of the
liquid and the consequent decreasing of the jet radius. Thus, there is a slow motion
of the liquid, moving with the average axial velocity (albeit the tangential electric
field should be small enough to keep conditions quasi-static when moving with the
liquid). Another implication of the assumption of an EHD surface quasi-equilibrium
condition is the use of the classical, static form of the capillary equilibrium condition
with the static value of the surface tension γ (Landau & Lifshitz 1960, §15).

Furthermore, the surface tangential electric stress τe ∼ µ∆U/Rj (where ∆U is
the typical transversal variation of the liquid velocity U ∼ Q/R2

j ) is of the order of

ρU2Rj/L ∼ ρQ2/(R3
j L). If this surface stress is small as compared to µU/Rj ∼ µQ/R3

j ,
the axial velocity profile of the liquid is almost flat (see Melcher & Warren 1971,
pp. 130–131, and 142; Fernández de la Mora & Loscertales 1994, p. 183; Mestel
1994, pp. 95–96; Gañán-Calvo et al. 1994) since the transversal velocity variation ∆U
is small compared to U. This is accomplished if the viscous diffusion of momentum
from the surface is efficient, since the larger the viscosity, the flatter the velocity
profile for a given flow rate and surface stress, or alternatively: if the viscous diffusion
time across the jet tv ∼ R2

j /ν is of the order of, or smaller than, the hydrodynamic
residence time to:

to & tv =⇒ Q

νL
. 1 (1.2)

(where ν is the liquid kinematic viscosity), the vorticity is sufficiently diffused across
the jet’s section, and its value is small compared to U/Rj ∼ Q/R3

j . Within this limit, a
liquid portion of the jet can be followed in a Lagrangian framework moving with the
local, axial velocity of the liquid, with respect to which the liquid may be considered
almost quiescent. It is noteworthy that in this limit the liquid viscosity disappears
from the equations if the axial component of the viscous diffusion µ∂2vz/∂z

2 ∼ µU/L2

(where z stands for the axial coordinate, and vz is the liquid velocity in the z-direction,
see Melcher & Warren 1971, pp. 133 and 142) is small compared to the variations of
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the liquid inertia along the jet:

ρ
U2

L
� µ

U

L2
=⇒ Q

νL
�
(
Rj

L

)2

(1.3)

where ρ is the liquid density, µ = ρν, and L is a characteristic axial length. In
conclusion, we have that

(i) charge relaxation effects are negligible if
βεoQ

KR2
j L
� 1;

(ii) viscous effects are negligible if(
Ro

L

)2

� Q

νL
. 1. (1.4)

In §3, both conditions are checked for a real electrohydrodynamically driven jet.
The problem will be solved in the absence of ion emission or corona discharge

phenomena. A thorough discussion on this particular subject can be found in
Cloupeau (1994, pp. 1150–1152).

2. Formulation of the problem
A semi-insulating liquid with electrical conductivity and permittivity K and εi,

respectively, is issuing in the form of a steady, slender capillary jet from an injecting
needle or a circular orifice of radius Ra. There is an electric potential difference
∆φo (a control parameter of the problem) between the needle and the surroundings,
generally a grounded electrode located in front of the needle, so that there is an
‘external’ electric field applied along the jet direction, and the jet is bearing an electric
charge. Some configurations of the electrohydrodynamically driven jets considered
in this work are given in figure 1. The liquid flow rate Q is kept constant as a
given parameter (another control parameter) of the problem. Other physical relevant
parameters of the problem are the liquid-gas surface tension γ, and the liquid density
and viscosity, ρ and µ, respectively. As a result of the electric charge carried by the jet,
there will be a net electric current I circulating from the injecting needle (or orifice)
towards the external electrode. There are two possibilities:

(i) The jet is continuous and strikes the electrode before breaking up into droplets.
This problem was considered by Melcher & Warren (1971). The charge is then
circulated to the electrode by both bulk Ohmic conduction along the jet and surface
charge convection, although the latter was neglected by Melcher & Warren in their
model.

(ii) The jet breaks up into charged droplets which travel towards the electrode
under the external electrostatic field’s force. The electric current is then entirely
convected by the droplets.

In either case, the electric current I is a result of the potential difference ∆φo
between the jet’s base and the electrode. In the case of Melcher & Warren, the values
of ∆φo for which their jets are steady range from 0 to several kilovolts, being the
upper limit determined by asymmetric instabilities or gas discharges. The jet acts
almost as an electric resistance between the charged needle and the electrode: there
is an almost linear relation between the voltage drop and the electric current. Thus,
either ∆φo or I may be taken as the control parameter: given one of them, the other
is determined. In the second scenario, the necessary potential differences are of the
order of kilovolts, but the range of these potential differences for which the jet is



170 A. M. Gañán-Calvo
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Figure 1. (a) Configuration, coordinates, and dimensions for the extension of Melcher & Warren’s
model, where ∆φo = φo − φ1, and ∆φ1 = φo − φ2. (b) Configuration, coordinates, and dimensions
in the analysis of Taylor’s jet.

steady is greatly reduced to a few hundreds of volts (Zeleny 1915, 1917; Jones &
Thong 1971; Mutoh, Kaieda & Kamimura 1979; Smith 1986; Cloupeau & Prunet-
Foch 1989, 1990; among many others). In this case, the electric current I is no longer
a control parameter since the potential difference is almost fixed, and I becomes an
eigenvalue of the problem, depending almost entirely on the liquid physical properties
and the liquid flow rate Q (Cloupeau and Prunet-Foch 1989; Fernández de la Mora
& Loscertales 1994).

The slender geometry of the jet will allow a dramatic simplification of the equations.
We will first derive the equations retaining the non-steady terms in order to understand
the basic phenomena involved in the propagation of disturbances along the jet,
similarly to the model presented by Melcher & Warren (1971). This will be essential
for the discussion of the global stability of the jet and the existence of a cut-off flow
rate: while the flow remains supercritical (liquid velocity larger than the propagation
speed of perturbations), the strong perturbations due to the jet breakup cannot
proceed upstream and the jet stays almost unperturbed up to the breakup region. For
the existence of such a supercritical flow, the existence of a critical point is necessary
at the exit of the feeding needle at which the flow accelerates from a subcritical to
a supercritical regime. This supercritical flow is almost insensitive to downstream
perturbations or boundary conditions. However, when the parametrical limit for the
existence of such a critical point is reached, the supercritical shield disappears and
the whole flow becomes affected by the jet breakup. In this situation, the whole jet is
no longer stable (global instability). An analogous phenomenon, rather common and
observed by anyone, is the minimum flow rate for which a laminar, capillary, steady
jet issuing from a tap suddenly bifurcates to a dripping mode, which was described
theoretically by Bogy (1981).



Electrohydrodynamically driven capillary jets 171

2.1. One-dimensional model equations

The jet is assumed to have axial symmetry along its direction of propagation. Thus,
except when otherwise stated, we will use cylindrical coordinates (r, z) to describe the
jet’s motion and geometry, and all dependent variables are in general functions of the
axial position z and time t.

The jet’s shape is described by a function ξ satisfying

ξ − r = 0 (2.1)

where, owing to the slenderness of the jet, its characteristic axial length L is large
compared to its typical radius Ro ∼ O(ξ).

Owing to the electric potential difference between the jet and the surroundings, the
jet is bearing a charge σe per unit length equal to

σe = 2πξεo
[
Eo
n − βEi

n

]
(2.2)

where β = εi/εo is the permittivies ratio between the liquid and the vacuum. Eo
n and

Ei
n are the outer and inner normal electric fields on the jet’s surface.
In addition, the jet is subject to an axial electric field Ez and, therefore, the

liquid–gas interface undergoes an electric tangential stress given by

τe = Ezεo(E
o
n − βEi

n) ≈ εoEo
nEz (2.3)

under the assumption βEi
n � Eo

n . Thus, following Melcher & Warren in assuming
an almost flat velocity profile v ≈ Q/(πξ2) (under conditions given in §1.1) the mass,
momentum and charge conservation equations read

∂ξ2

∂t
+

∂

∂z
(ξ2v) = 0, (2.4)(

∂

∂t
+ v

∂

∂z

)
v +

1

ρ

∂p

∂z
=

2εoEzE
o
n

ρξ
, (2.5)

ξ

(
∂

∂t
+ v

∂

∂z

)
Eo
n +

K

2εo

∂

∂z
(ξ2Ez) = Eo

n

(
∂

∂t
+ v

∂

∂z

)
ξ, (2.6)

respectively. p and v are the local thermodynamic pressure and axial velocity of
the liquid, respectively, and the pressure jump across the jet’s surface must obey the
capillary equation:

p− pa =
γ

ξ
− εo

2

[
(Eo

n )
2 + (β − 1)E2

z

]
(2.7)

where pa = const. is the outside gas pressure. From now on, and without lost of
generality, we will write p− pa simply as p.

The outer electric field is given by the equation

∇ · Eo = 0 (2.8)

with boundary conditions. This equation and boundary conditions close the problem
since they formally supply a relationship between the outside, normal component Eo

n

and the tangential component Ez of the electric field at the jet’s surface. However, is
not always possible to write a closed expression for the relationship between Ez and
Eo
n owing to the complexity of the external boundary conditions (needle, collector,

and surrounding geometries and potentials). It is at this point where an important
feature of the problem arises: whether or not the electric self-induction on the jet is
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allowed for. It will be shown that Taylor’s jets (the ones issuing from the so-called
Taylor’s cones) are genuinely self-inductive.

Finally, once the tangential component Ez is known, the inner electric field can be
calculated under the assumption that free charges are absent from the liquid bulk,
and stay in a quasi-equilibrium surface charge layer. The solution of the inner electric
field, satisfying the Laplacian, gives

Ei
n +

1

2ξ

∂

∂z
(ξ2Ez) = 0 (2.9)

owing to the slenderness of the jet’s geometry (L� Ro).

2.2. No self-induction external electric field on the jet: an extension
of Melcher & Warren’s model

In order to overcome the problem of finding a closed expression for the tangential
electric field on the jet’s surface, Melcher & Warren (1971) studied a particular
configuration for which the tangential electric field was imposed by a cylindrical
electrode concentrically surrounding the jet (figure 1a). This electrode, subject to a
potential difference, presented a linear potential decay along its axis, such that

EzW = −dφW
dz

= const. (2.10)

where φW is the cylindrical electrode’s potential. If its position is given by r = R2, the
tangential electric field Ez on the jet’s surface can be expressed in closed form as

Ez = ξ log

(
ξ

R2

)
∂Eo

n

∂z
+ Eo

n

[
1 + log

(
ξ

R2

)]
∂ξ

∂z
+ EzW . (2.11)

Melcher & Warren’s rather pioneering model differs from the present one in that
the convective charge variations in equation (2.6) are now retained. In order to clarify
the statement made by these authors that an electric relaxation time εo/K ‘short
compared to times of interest,’ (say to) reduces equation (2.6) ‘to its last term, which
is then integrated to obtain:’ Ez = I/(Kπξ2), where I is the total electric current
carried by the jet (Melcher & Warren 1971, p. 133) it should be pointed out that
their simplification is valid as long as the characteristic axial and transversal lengths
of the problem are comparable. However, for slender jets, an estimation of the orders
of magnitude of the two terms in equation (2.6) does not allow the neglect of the
first term when K/εo � t−1

o , since L � Ro. In fact, the first term in (2.6) is of
O((φs−φW )/to) ∼ O(φW/to), while the second one is O((K/εo)(R

2
o/L

2)φW ). Therefore
the ratio between the two terms is of the order of

εo

Kto

L2

R2
o

(2.12)

which is not necessarily small, even though εo/K � to.
The condition of negligible charge relaxation effects (βEi

n � Eo
n ) allows a drastic

simplification of capillary equation (2.7) since the effect of the inner electric field
can be neglected in this limit, and the coupling between equations (2.7) and (2.9)
disappears. Therefore, equations (2.4), (2.5), (2.6) and (2.11) define a system of four
first-order partial differential equations with characteristic equations like the one
found by Melcher & Warren (see also Shapiro 1953, p. 73). Focusing our attention
on the axisymmetric perturbations within the limit (1.1), i.e. perturbations with a
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wavelength λ such that Ro � λ� L, but still

βQεo

KR2
oλ
� 1, (2.13)

we deal with non-dispersive, quasi-one directional waves only. Their propagation
speed a (as usual, with respect to the moving liquid), interestingly enough, is slower
in the upstream direction (say a−) than in the downstream direction (say a+). The
result is the same as that found by Melcher & Warren, given by

aMW =

{
εo

2ρ

[
1 +

1

log(ξ/R2)

]
(Eo

n )
2 +

εo(β − 1)

ρ
E2
z −

γ

2ρξ

}1/2

(2.14)

except for the appearance of a new term, aCC , due to the non-zero surface charge
convection. The resulting wave speed can be written in the form

a± = ±aCC + (a2
MW + a2

CC)1/2 (2.15)

where

aCC =
ε2o(β − 1)Eo

nEz

2ρKξ

[
2 +

1

log(ξ/R2)

]
. (2.16)

The additional term is, however, small compared to aMW except for high-polarity
liquids (β � 1). A detailed derivation of the propagation speed a and its limits of
applicability is given in Appendix A.

As long as this wave speed is real, the jet is locally and convectively stable, but
should a− become complex (i.e. when a2

MW 6 a2
CC), with a non–zero imaginary part

equal to (a2
CC − a2

MW )1/2, the jet become convectively unstable, in the sense that small
perturbations grow exponentially in time when moving at the average jet velocity
(convective instability). It should be repeated that |aCC | is small compared to the
wave speed |aMW | or the liquid velocity v = Q/(πξ2) in the supercritical region for
moderate-permittivity liquids, as will be shown in §3. In these cases, a2 ≈ a2

MW ,
and the jet becomes unstable, within a good approximation, at the point where a2

MW

becomes negative.

The steady form of system (2.4), (2.5), (2.6), (2.7) and (2.11) within the limit (1.1)
can be reduced to a system of two first-order ordinary differential equations given by[

2εo(β − 1)

ρ
E2
z −

(
Q

π

)2
2

ξ4
− γ

ρξ

]
1

ξ

dξ

dz
− εoEn

ρ

dEo
n

dz
=

2εoEzE
o
n

ρξ
(2.17)

together with equation (2.11). Ez is obtained from the steady, integral form of equation
(2.6):

I = Kπξ2Ez +
2QεoE

o
n

ξ
(2.18)

where I is the total electric current. In explicit form, one has

dξ

dz
=

−εoEo
n

[
Ez

(
1 + 2 log

(
ξ

R2

))
− EzW

]
2ρ log

(
ξ

R2

)
(v + a+)(v − a−)

, (2.19)
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dEo
n

dz
=

εoEz(E
o
n )

2

[
1 + log

(
ξ

R2

)]
−
[
εo(β − 1)E2

z − ρ
(
Q

π

)2
1

ξ4
− γ

2ξ

]
(Ez − EzW )

ρξ log

(
ξ

R2

)
(v + a+)(v − a−)

.

(2.20)
In these expressions, v = Q/(πξ2) is the liquid velocity, Ez is obtained from (2.18),
and a± is given by expression (2.15). The total electric current I is an eigenvalue of
the problem, which is solved using the integral condition:∫ L

0

Ez(z)dz = ∆φo (2.21)

where ∆φo is the potential difference between the needle and the plate the jet finally
meets. The boundary conditions

ξ(0) = Ra and Eo
n (0) =

∆φ1

Ra log(Ra/R2)
(2.22)

finally determine the solution of the problem, where Ra is the feeding needle’s radius,
and ∆φ1 is the value of the potential difference between the needle and the cylindrical
electrode at the origin (see figure 1a).

As Melcher & Warren pointed out, the flow can be either subcritical or supercritical
depending on whether a− is larger or smaller than v, respectively (a− and v being
considered real and positive). Although this problem was analysed by Melcher &
Warren in the limit of a negligible surface charge convection (aCC ≡ 0), the importance
of the identification of such regimes becomes apparent on analysing experimentally
the global stability of the flow (there is an interesting educational film on this subject
made by these authors).

While v is smaller than a−, the flow is locally subcritical, and switches to a
supercritical regime for v larger than a−. This simple picture, however, is not so
straightforward if one analyses expressions (2.19) and (2.20): the flow must cross a
point where a− = v, and equations (2.19) and (2.20) become singular. The condition
that dξ/dz and dEo

n/dz must be finite (both nominator and denominator in the
right-hand-side terms be zero at the singular point) leads to the characterization of
the critical or transonic point. Why Melcher & Warren could not find a critical point
(transonic flow) with their model can be seen from equation (2.19): both numerator
and denominator of the right-hand-side term should be simultaneously zero at the
critical point; however, it is impossible since Ez[1 + 2 log(ξ/R2)] is always smaller
than EzW . Ez must be positive in order to have a decreasing potential along the
jet (the contrary is an absurdity), and the driving external axial electric field EzW
is also positive; there is no point in the (positive) phase space (ξ, Eo

n ) for which
both numerators in equations (2.19) and (2.20) become simultaneously zero in these
conditions. Thus, the numerator in equation (2.19) is always negative, while the
denominator can vanish at a certain point, but since it would lead to a local infinite
slope, such a point cannot exist in the range 0 < z < L.

In conclusion, Melcher & Warren’s jets are either subcritical or supercritical from
the very beginning (z = 0) up to the point where they impinge on the final electrode
(z = L), or up to the point z∗ where they become unstable (a2

MW (z∗) = 0). The
most important result from Melcher & Warren’s model in connection with the EHD
spraying of liquids may be the following conclusion: if the physical parameters are
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Figure 2. (a) A photograph of an electrohydrodynamically driven jet issuing from a metallic needle.
The experimental conditions are given in §3. (b) A plot of the digitized and adjusted shape in the
region of interest, using an eighth-order hyperbolic regression.

such that the jet is supercritical from the beginning, it remains supercritical and,
therefore, insensitive to downstream (mechanical) boundary conditions.

2.3. Further extension of the one-dimensional model: jets undergoing self-induction,
Taylor’s jets

Here, the difference with the model in §2.2 lies in the outer electric field. When
the electrode’s radius R2 becomes comparable to the characteristic jet’s length L, the
expression for the tangential electric field Ez on the jet’s surface is not as simple as
that given by (2.11). In this case, most regions of the outer domain of the electric
field are now under the direct influence of the whole charge distribution at the axis
represented by the jet, whereas only a short region whose axial length is of the order
of R2 � L was under the direct influence of a certain point of the jet (see figure
1a) in the previous configuration, which precluded the appearance of a self induction
effect. In a more general situation, the jet is under the influence of its own electric
field, which couples the values of the jet’s radius and its charge at each point with
those at the other points. The present work is principally aimed at showing why
Taylor’s jets, genuinely self-inductive and presenting an important surface charge
convection, present such remarkable steadiness and stability: it is related to the
supercritical nature of the flow almost from the beginning of the jet. Thus, the jet
and its electric current are almost insensitive to (i) the breakup perturbations at its
end, and (ii) changes in the downstream boundary conditions such as the collocation
of the grounded electrode that the jet strikes (or passes through a hole in it) before
it breaks up into droplets (see figure 1b).

For illustrative purposes, the physical configuration of the jet under study is that
given in figure 2. Closing of the system of equations (2.4)–(2.7) requires the self-
consistent solution of the external electric field for this geometry. Several authors
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have undertaken this problem within certain simplifications (e.g. see Jones & Thong
1971, who neglect the presence of the liquid jet and spray for calculating the needle-
to-plate electrostatic field). Much more recently, Pantano, Gañán-Calvo & Barrero
(1994) solved numerically for the first time the electrostatic problem of a pointed
meniscus attached to a metallic needle in a point-to-plane configuration, also in the
limit of a negligible space charge owing to charge emissions (in the form of liquid
jet, droplets or ions). In the present work, the presence of the jet invalidates such
approximations neglecting the space charge between needle and plate, and the jet
problem must be solved together with the needle–plate boundary conditions.

In spite of the intrinsic difficulty of the problem, there are still analytic ways to
find, at least formally, closed expressions for the outer electric field in the case of
slender quasi-cylindrical geometries.

2.3.1. Analytical expressions for the outer electric field

Among the most suitable methods for solving such an involved problem are the
spectral ones, owing to the common analytic behaviour of the form log(r) that the
spectral functions present close to the axis of symmetry, either using cylindrical,
spherical or any other coordinates having axial symmetry. Furthermore, among the
several possible systems of coordinates, experience shows that a suitable choice is the
use of spherical coordinates (R, θ) centred either at the tip of the conical shape giving
rise to the jet, or at the mouth of the feeding needle if the jet can be considered
almost one-dimensional from the beginning (see figure 1b).

Without lost of generality, let us assume that the jet extends for θ −→ π (R > 0),
since the position of the origin can be chosen. Therefore, for the steady jet’s radius ξ
we have

ξ

R
= arctan(π− θS ) ≈ (π− θS ) (2.23)

at the points (R, θS ) defining the jet’s shape. In order to keep the quasi-one-
dimensionality hypothesis valid in the region of interest, R must be larger than
a given α > 0 such that ξ/α may still be considered small (of the order of the
maximum admissible errors). This point should be taken into account when defining
the position of the origin (see figure 1b).

The electric potential at the surface can be expressed in the form (Appendix B):

φs(R) = B(R)− A(R) log(π− θ) ≈ B(R)− A(R) log(ξ/R) (2.24)

where B(R) and A(R) are not independent functions: they are related through the
boundary conditions, as shown by expression (B 5). The dimensional function A(R)
is related to the jet’s charge per unit length by

A(R) =
σe(R)

2πεo

[
1 + O(ξ/R) + O(βEi

n/E
o
n )
]
≈ σe(R)

2πεo
(2.25)

since the normal electric field Eo
n on the surface is

Eo
n = − 1

R

∂φ

∂θ

∣∣∣∣
θS

A(R)

ξ

[
1 + O(ξ/R)

]
≈ − 1

R

∂φ

∂θ

∣∣∣∣
θS

A(R)

ξ
. (2.26)

The non-singular part B(R) of the outer electric potential contains both the electro-
static solution close to the axis in the total absence of the jet (e.g. the one due to
the needle, or the far region of the electrostatic cone in the cone–jet configuration,
Cloupeau & Prunet-Foch 1989; Gañán-Calvo et al. 1994), and the non-singular part
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of the electric potential due to the jet’s presence. Thus, let us write B(R) as

B(R) = Bo(R) + B1(R) (2.27)

where Bo(R) is such that dBo/dA ' 0 (being Bo 6= 0 in the total absence of the jet).
In this work, function Bo(R) is assumed known.

The axial coordinate z can now be identified with R within errors of the order of
(ξ/R)2 � 1. Thus, the equation for the tangential electric field at the jet’s surface can
be written in a formal way as

ER = ξ

[
log

(
ξ

R

)
− dB1

dA

]
∂Eo

n

∂R
+ Eo

n

[
1 + log

(
ξ

R

)
− dB1

dA

]
∂ξ

∂R
− ∂Bo

∂R
− ξEo

n

R
(2.28)

for the case that a single term of the power series solution considered in Appendix
B, equation (B 5), gives enough accuracy in the region of interest. The self-induction
effect, absent in Melcher & Warren’s model, is now apparent through the additional
term represented in a simplified form as dB1/dA, which stands for the dependency
of the non–singular part B1(R) of the outer electric potential (close to the axis) on
the charge distribution along the axis (self-induction effect). It does not depend
on local conditions only, but on those for whole domain when solving the prob-
lem self-consistently. There is also a sui generis, new self-induction term, ξEo

n/R,
which represent the coupling between θ and R when using spherical coordinates
and eigenfunctions to solve the Laplacian for almost cylindrical geometries, even
for | tan(θ)| � 1 (it is part of the projection of Eo

n on the surface using spherical
coordinates).

The wave speed of perturbations a± has the same expression as (2.15) but now aCC
is given by

aCC =
ε2o(β − 1)Eo

nEz

2ρKξ

[
2 +

1

log(ξ/R2)− dB1/dA

]
(2.29)

which is affected by the existence of self–induction through the term dB1/dA.
The steady forms of the equations for the jet’s radius ξ and the outer normal

electric field Eo
n are now

dξ

dR
=

−εoEo
n

{
ER

[
1 + 2

(
log

(
ξ

R

)
− dB1

dA

)]
+

dBo
dR

+
ξEo

n

R

}
2ρ

[
log

(
ξ

R

)
− dB1

dA

]
(v + a+)(v − a−)

, (2.30)

dEo
n

dR
= −

[
εo(β − 1)E2

R − ρ
(
Q

π

)2
1

ξ4
− γ

2ξ

](
ER +

dBo
dR

+
ξEo

n

R

)
ρξ

[
log

(
ξ

R

)
− dB1

dA

]
(v + a+)(v − a−)

+

εoER(Eo
n )

2

[
1 +

(
log

(
ξ

R

)
− dB1

dA

)]
ρξ

[
log

(
ξ

R

)
− dB1

dA

]
(v + a+)(v − a−)

. (2.31)

System (2.30)–(2.31) must be solved subject to the electric boundary conditions at
the needle and the jet’s end, and to those resulting from the structure of a possible
critical point.
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2.3.2. Physical interpretation of the quasi-one-dimensional equations: supercritical
region and jet stability

As pointed out at the beginning of this section, the existence of a supercritical
region, where v > a−, is the key for the existence of perfectly steady electrohydrody-
namic capillary jets such as the ones that emerge from equilibrium capillary surfaces
(Taylor’s cones). While the absence of self-induction effects in equation (2.19) prevents
the existence of a point where both numerator and denominator in that equation may
vanish, the self-induction terms ξEo

n/R (strictly positive) and −dB1/dA in equation
(2.30), and therefore in equation (2.31), present in Taylor’s jets, now allow the exis-
tence of such a point. From the critical point downstream, the supercritical region
of the jet actually supplies an impenetrable shield for the fragile conical capillary
equilibrium meniscus anchored at the needle’s mouth protecting it from the violent
perturbations caused by the jet breakup occurring where it ends. The electric current
may be locally perturbed by a surface deformation, and the local total free energy
increment due to the perturbation is propagated with a wave speed a− or a+ in the
upstream or downstream direction respectively, in an analogous way as an acoustic
perturbation in a nozzle that provokes a local isentropic perturbation of the gas den-
sity. If the perturbation cannot proceed upstream, the jet’s shape cannot be influenced
by changes in the flow occurring downstream of the critical point. Therefore, since the
surface electric convection soon becomes dominant over the bulk conduction current
(as will be seen in §3), and the surface current is given by the jet’s shape, the total
electric current remains almost insensitive to downstream boundary conditions. For
this reason, analogously to the nozzle theory, the electric current may be interpreted
as being ‘choked’ at the critical point. This feature may explain the conspicuous
invariance of the electric current reported by Fernández de la Mora & Loscertales
(1994, figure 1) when the cone–jet approaches the grounded electrode.

The propagation speed of the jet’s surface perturbations is therefore similar to the
propagation speed of a local density perturbation in a nozzle, except for the difference
(small in many cases) in the upstream and downstream wave speed. However, the
surface can propagate the perturbation only if it is locally stable, i.e. when a− is
real, which is possible only if the electric forces (the electrostatic force εo(E

o
n )

2/2
and the polarization force εo(β − 1)E2

z /2) overcome the destabilizing effect of the
surface tension force γ/ξ (see for example Schneider et al 1967; Saville 1970; Melcher
& Warren 1971; Huebner & Chu 1971; Mestel 1994; among others). Should
a− become complex (or a2

MW − a2
CC < 0), the capillary jet becomes convectively

unstable and breaks up downstream after several wavelengths, depending on the
liquid viscosity. Let us call this the ‘point of instability’, which defines the limit
between the supercritical and the breakup regions. As long as this point is far away
(downstream from the critical point) the supercritical region is not only protective, in
the sense that it precludes the propagation of disturbances upstream, but convectively
stable itself.

When the flow rate decreases, the point of instability moves upstream; there is
a certain flow rate for which this point gets so close to the critical point that the
supercritical barrier breaks down: it is the global stability limit of the steady jet;
at this flow rate, the flow bifurcates from a steady liquid emission in the form of a
capillary jet to a dripping, unsteady regime. However, this simplified picture of the
minimum flow rate is actually more involved owing to the rôle of the liquid viscosity
in delaying the appearance of surface instabilities, and the influence of not small
breakup disturbances over the supercritical region.
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The next objective of the present work is to show the existence of such a supercritical
region in a real jet using the quasi-one-dimensional model. In order to gain knowledge
about the characteristic values of the different electrohydrodynamical effects in the
governing equations and their relevance, let us perform an experimental analysis of
a typical Taylor’s jet. In this experiment, the supercritical nature of a Taylor’s jet is
shown, and its specific characteristics discussed.

3. Experimental analysis
This experiment, arbitrarily extracted from experimental work in progress, serves as

an illustration for the understanding of the phenomenon and for the general scaling
of the problem. Instead of solving the complete problem for given liquid properties
and boundary conditions, the jet’s shape ξ is taken from an actual jet, avoiding the
complicated solution of the outer electric field. Therefore, the remaining unknowns v,
Eo
n , p, and Ez can be calculated using the steady form of the conservation equations of

mass, momentum and charge, and the capillary condition i.e. by solving the following
equations:

v =
Q

πξ2
, (3.1)

ξ

2εo

d

dz

(
p+ 1

2
ρv2
)

= Eo
nEz, (3.2)

I =
2Qεo
ξ

Eo
n + πξ2KEz (3.3)

and
γ

ξ
= p+

εo

2

(
(Eo

n )
2 + (β − 1)E2

z

)
. (3.4)

This system of equations can be reduced to a first-order ordinary differential equation
in Eo

n or v or p or Ez . In Appendix C, system (3.1)–(3.4) is reduced to a differential
equation for Eo

n , and the uniqueness of the obtained solution discussed.
Once the ‘basic’ variables Eo

n , Ez and p are obtained for a given jet shape ξ(z),
any other desired EHD quantity can be calculated. For example, the inner electric
field Ei

n is given by equation (2.9), the electrostatic force is εo(E
o
n )

2/2, the polarization
force is εo(β− 1)E2

z /2, the kinetic energy of the liquid is given by ρQ2/(πξ2)2, etc. The
perturbation wave speed a± can be calculated using

a± ' ±ε
2
o(β − 1)Eo

nEz

ρKξ
+

[
εo

2ρ
(Eo

n )
2 +

εo(β − 1)

ρ
E2
z −

γ

2ρξ
−
(
ε2o(β − 1)Eo

nEz

ρKξ

)2
]1/2

(3.5)
valid within errors of O

(
| log(ξ/L)|−1

)
� 1 (see expression (2.15)), L being a charac-

teristic axial length of the jet. It should be pointed out that, although those errors are
small for most of the supercritical region, they grow and become not small when the jet
approaches the cone. Therefore the location of the critical point is only approximate
when using expression (3.5). The term dB1/dA requires a priori the calculation of the
external electric field with boundary conditions. Since all variables except the per-
turbation wave speed can be calculated within errors of O(ξ/L)� O

(
| log(ξ/L)|−1

)
,

for the purposes of this analysis no more accurate expressions for a than (3.5) will be
used here.
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Figure 2 shows a jet issuing from a stainless steel needle of outer and inner diameters
do = 1.20 mm and di = 0.70 mm, respectively. The distance from the needle bottom
to the grounded plate is H = 38.50 mm. The liquid used is 1–octanol, with density,
viscosity, surface tension, electrical conductivity and relative permittivity ρ = 827 kg
s−1, µ = 0.0081 kg m−1 s−1, γ = 0.0235 N m−1, K = 8.05× 10−6 S m−1, and β = 10.0,
respectively. Surface tension was measured with a digital tensiometer Krüss model
K10T, liquid viscosity with a torque viscometer from Brookfield, electrical conductivity
with a Microprocessor Conductivity Meter LF 3000 from WTW, and permittivity was
calculated using Lide’s tables (Lide 1990). All properties were obtained at a constant
room temperature, T = 23◦C. The liquid flow rate was Q = 4.45× 10−9 m3 s−1, and
the applied voltage to the needle was V = 4650 V. The measured emitted current was
I = 70.8 nA. It is therefore unnecessary to solve the critical point of the flow since
the eigenvalue I of the problem is experimentally measured and the actual solution
of the problem specified.

The cone–jet’s shape, presented in figure 2(a), was digitized using image processing
techniques, and adjusted by an eighth-order hyperbolic regression:

ξ =
1

8∑
n=0

anz
n

(3.6)

in the region of interest, a plot of which is shown in figure 2(b).
In the following results, a ‘radiography’ of the flow is presented once the jet’s shape

is known. In order to warrant the one-dimensional assumptions, equations (3.1)–(3.4)
are solved from the point where the jet’s slope is less than 0.2. Some main results are
summarized in figure 3.

Figure 3(a) gives a comparison between the normal (Eo
n ) and tangential (Ez)

components of the outer electric field, and the inner, normal electric field Ei
n. It

is apparent that Eo
n is everywhere large compared to Ez (of the order of 100 times

smaller in this case). In addition, and which is essential with regard to the most
important EHD hypothesis made in this work (the neglect of the charge relaxation
effects), the quantity βEi

n is shown to be 100 to 1000 times smaller than Eo
n . This

confirms that charge relaxation effects in the liquid are unimportant in this case.
However, it should be pointed out that Ei

n can be of the order of 10–20% of Eo
n

for this liquid in limit situations, close to the minimum flow rate for which a steady
regime can be achieved.

Figure 3(b) shows v, a− and a+. The existence of a point where v = a− may be
observed, at zc = 0.675 mm. In addition, when the jet’s shape is analysed in the
vicinity of the breakup region, there is a point not shown in the plot where a− = 0
(at za ' 3.1 mm). Downstream of this point, the jet becomes convectively unstable,
by means of the capillary Rayleigh’s instability. Note the small difference (equal to
2aCC) between a− and a+ in this case (β = 10).

The electric bulk conduction current is compared with the surface charge advection
current in figure 3(c). The bulk conduction becomes dominant over surface advection
in the subcritical region, close to the needle. As the flow approaches and passes
the critical point, the surface advection increases and become dominant over the
bulk conduction. Eventually, close to the breakup region, the surface advection is
almost the only charge transport mechanism of the flow. It is worth noting that
bulk conduction approaches well (within the experimental errors) an exponential
function IB ' 70.8× 10−9 exp(−2z/L)A, while the electric surface convection is IC '
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Figure 3. (a) The normal Eo
n and tangential Ez components of the outer electric field, and the

inner, normal electric field Ei
n. (b) The square of the liquid velocity v2 and propagation wave

speed of perturbations a2. (c) The surface advection, electric current compared to the Ohmic bulk
conduction current. (d) Comparison of the kinetic energy of the liquid, pressure jump across the
surface, electrostatic forces and the polarization forces in the region of interest. (e) Potential decay
along the jet in this region, with respect to an arbitrary potential reference.
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70.8× 10−9[1− exp(−2z/L)]A, where L ' 0.86 mm. L can be physically interpreted
as an EHD ‘global relaxation’ length of the problem (not to be confused with bulk
electric relaxation), that may be useful for understanding these electrohydrodynamic
flows as a transition from a region dominated by, say, ‘electrostatics’ and bulk electric
current, towards another region dominated by ‘hydrodynamics’ and surface advection
current, through a critical point.

A comparison of many important forces of the flow is shown in figure 3(d). One
of the most apparent features of the subcritical region is the dramatic increase of the
kinetic energy of the liquid, at the expense of the electric potential (see figure 3e):
the tangential electric stress applied on the surface and transmitted to the liquid bulk
by viscous stresses experiences a maximum in this region. The pressure jump across
the surface, which in the cone seems to be negative owing to electrostatic suction
(in this particular case), increases in this region as an indirect consequence of the
total amount of momentum being introduced into the liquid by the electric stresses,
which is employed in the increase of both the liquid inertia and pressure. However,
while the liquid inertia is allowed to increase without limit as long as momentum is
fed through the liquid surface, the pressure jump is limited by the surface tension
force. In fact, the supercritical region is characterized by an increase of the kinetic
energy over all other forces represented in figure 3(d), while pressure, electrostatic,
and surface tension forces balance one each other. Finally, the polarization force
(β − 1)E2

z is plotted (almost coinciding with the horizontal axis) just to show how
small is it compared to the rest of the forces in this case (β = 10, moderate or small
polarity). Finally, the potential decay along the region here analysed is given in figure
3(e).

To guarantee that this experiment is within the limits of the present theory, let us
check (1.1) and (1.4) using L ' 0.86 mm and Rj equal to the jet’s diameter at each z
point. The maximum value for (1.1) gave

βεoQ

KR2
j L

= 0.0098� 1. (3.7)

For the viscosity requirements, the limits given by (1.3) are(
Rj

L

)2

∼ 1× 10−3 � Q

νL
∼ 0.52 . 1. (3.8)

The following conclusions may be drawn from this experimental analysis.
(i) The supercritical nature of an electrohydrodynamically driven jet issuing from

a Taylor’s cone is, for the first time, experimentally verified. The existence of a critical
point almost at the neck joining jet and cone is also shown (zc ≈ 0.675 mm in figure
2b).

(ii) There is a point where a2 = 0 (za ' 3.1 mm, not shown), from which the
small perturbations begin to grow, and they become noticeable at the region close
to the breakup point, approximately at zb ' 3.5 mm. Therefore, the supercritical
shield (supercritical and convectively stable flow) extends from zc = 0.675 mm to
za = 3.1 mm.

(iii) The normal component of the outer electric field on the surface is everywhere
large compared to the tangential one (almost two orders of magnitude larger, in this
experiment).

(iv) The dominant electric current transport is bulk conduction in the subcritical
region, when the jet’s radius becomes large compared to the critical radius. However,
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surface charge advection becomes of the same order as bulk conduction close to the
critical point, and eventually, close to the breakup point, the surface charge advection
is dominant.

(v) In the supercritical region the pressure jump overcomes the inertia term, and
eventually becomes dominant.

(vi) The surface charge layer is actually in quasi–equilibrium conditions: βEin � Eo
n .

(vii) Polarization forces are negligible in this experiment (moderate polarity).
Except for the last one, these conclusions are not specific to this particular exper-

iment. They seem to be rather general for liquids with sufficient conductivity and
satisfying the viscous restrictions for the assumption of an almost flat velocity profile
(Melcher & Warren 1971, p. 142). Indeed, the author could not find an experimental
situation in which one of them failed (except, as mentioned, the last one; a complete
experimental analysis, outside the scope of the present work, will be given elsewhere).

4. Conclusions
In this work we have analysed electrohydrodynamically driven jets in the paramet-

rical window corresponding to steady Taylor’s jets, namely jets issuing from needles
of small diameter, or from equilibrium Taylor’s cones (forming the so-called cone–
jet mode). A quasi-one-dimensional EHD model retaining the temporal terms, for
characteristic times larger than the electrical relaxation times te ∼ εo/K , has been
presented. It has been shown that the large axial length-to-diameter ratio of these
jets does not allow the convective terms in the charge conservation equation to be
neglected. Applying classical techniques, the axial propagation speed of disturbances
along the jet’s surface has been obtained, showing (i) the supercritical nature of
EHD-driven jets issuing from a Taylor’s cone, (ii) the existence of a critical point at
which the flow changes from a subcritical to a supercritical regime when the electrical
self-induction of the jet is not precluded, and (iii) that the upstream wave speed,
measured respect to the moving liquid (as usual) is slower than the downstream wave
speed.

As Melcher & Warren (1971) have already pointed out for their model, EHD-driven
jets without self-induction can be either subcritical or supercritical, but they do not
have a critical point, and therefore the co-existence of subcritical and supercritical
regimes is precluded in these cases: the change from a subcritical regime to a
supercritical one takes place as a global bifurcation of the whole flow. However,
Taylor’s jets are genuinely self-inductive. The conspicuous longevity and stability of
these jets is explained in terms of the existence of a supercritical and stable region
of the jet that shields the fragile equilibrium meniscus giving rise to the jet from the
strong perturbations produced at the jet’s breakup point. This stable region ends
at the point at which the upstream wave speed becomes a complex number (point
of instability). From this point downstream, the jet is convectively unstable, and the
small disturbances grow, leading to the eventual jet breakup several wavelengths after
that point, depending on the liquid viscosity. Only when the point of instability
approaches the critical point (i.e. for small flow rates), does the flow undergo a global
bifurcation to a dripping mode.

An experimental study has been also carried out, based on the analysis of a real
electrohydrodynamically driven Taylor’s jet shape, allowing the quantification of the
EHD variables of the problem, the identification of the supercritical region of the
jet, and the point of convective instability. The main EHD hypotheses of the present
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model are also checked and confirmed in this experiment, within the limits of the
one-dimensional assumption.
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Appendix A. Derivation of the perturbation wave speed
The system of first-order partial differential equations (2.4), (2.5), (2.6), (2.18), and

either (2.11) or (2.28) can be solved for a perturbation of wavelength λ, such that
Ro � λ� L, and

βQεo

KR2
oλ
� 1. (A 1)

In this limit, if one writes the dependent variables as

ξ2 = ξ2
o + F1(z − a∗t), Eo

n = Eo
no + F2(z − a∗t),

Ez = Ezo + F3(z − a∗t), v = vo + F4(z − a∗t),

}
(A 2)

where the first term in the right-hand side stands for the stationary value, and
Fi(z− a∗t) represent an almost non-dispersive wave (because the characteristic length
for the variations of a, of the order of L, is considered large compared to the
wavelength λ) with wave speed a∗ and wavelength λ, one may write the original
system, after some algebra and neglecting terms of order Fi/L compared to the ones
of order Fi/λ, as

(vo − a∗)Ḟ1 + ξ2
oḞ4 = 0, (A 3)

(vo − a∗)Ḟ4 −
1

2ρ

γ

ξ3
o

Ḟ1 −
εo

ρ
Eo
noḞ2 −

εo(β − 1)

ρ
EzoḞ3 = 0, (A 4)

ξ(vo − a∗)Ḟ2 +
K

2εo
(ξ2
oḞ3 + EzoḞ1) =

Eo
no

2ξo
(vo − a∗)Ḟ1, (A 5)

and, for the extended Melcher & Warren model:

ξo log

(
ξ

R2

)
Ḟ2 +

Eo
no

2ξo

(
log

(
ξ

R2

)
+ 1

)
Ḟ1 = 0, (A 6)

while for the self-inductive one, under the simplification indicated for equation (2.28),
one has

ξo

(
log

(
ξ

R

)
− dB1

dA

)
Ḟ2 +

Eo
no

2ξo

(
log

(
ξ

R

)
− dB1

dA
+ 1

)
Ḟ1 = 0 (A 7)

where the stationary terms satisfying the stationary equations cancel out in the above
expressions. This homogeneous system has two eigenvalues, which can be expressed
as a∗1 = vo +a+ and a∗2 = vo−a−, a± being equal to the perturbation wave speed given
by either (2.15) or (2.29) and representing the propagation speed of disturbances in
a Lagrangian frame moving with the surface’s velocity. The discussion in Melcher &
Warren about this wave speed is applicable here (Melcher & Warren 1971, pp. 133
and 134).
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Appendix B. Formal expressions for the outer electric field

The outer electric potential can be formally expressed in terms of discrete series of
Legendre and modified Legendre functions Pν(θ) and Qν(θ), respectively, as†

φ(R, θ) =
∑
ν

(AνR
ν + A′νR

−(ν+1)) [Qν(θ) + CνPν(θ)] (B 1)

where {ν} is a numerable, infinite set in {R} such that the infinite sequence of powers
{Rν}{ν} (ν < 0) is complete in the interval R ∈ (a,∞), a > 0 (i.e. the set {ν} should
verify the hypothesis of Müntz’s theorem, Müntz 1914). In this expression, the terms
A′νR

−(ν+1) can be neglected since (i) for ν 6 −1 they stand for far boundary geometries
(such as electrode borders, needle base, etc.) located at distances LB � L, and become
very small along the jet’s domain, when O(R) ∼ O(L), and (ii) for −1 < ν < 0, the
number −(ν + 1) is negative, and therefore is included in the set {ν}, ν < 0.

Coefficients Cν can be calculated by analysing the possible asymptotic electrostatic
solutions which might apply to the jet upstream (i.e. Taylor’s conical solution, 1964;
this solution is part of the so-called cone–jet mode after Cloupeau & Prunet-Foch
1989), or the electrostatic solution owing to the metallic needle. Here, we do not do
this analysis (it will be presented elsewhere) and take Cν as given.

Coefficients Aν represent the charge distribution on the axis for R ∈ (a,∞) due to
the jet, which is the ultimate solution to our problem. It should be solved together
with the conservation equations (2.17), (2.18), and the boundary condition

ER|surface = − dφ

dR

∣∣∣∣
Rsurface

(B 2)

The total electric current I is an eigenvalue of the problem, analogous to the gas flow
rate through a choked convergent–divergent nozzle, which is given by the structure
of the critical point and the particular solution passing through it. This solution is
not obtained in this work since it is mostly focused on the new physical aspects in
the natural extension of Melcher & Warren’s model.

The self-induction effect will be formally obtained in an explicit way in the following.
For θ −→ π, one has

Pν(θ)→ DP1(ν) log(π− θ) + DP2(ν), (B 3)

Qν(θ)→ DQ1(ν) log(π− θ) + DQ2(ν), (B 4)

where constants DP,Q(u) are known. Invoking (2.23), the electric potential at the jet’s
surface can be expressed as

φs(R) =
∑
ν

AνR
ν
[(
D

(0,π)
Q1 + CνD

(0,π)
P1

)
log(ξ/R) +

(
D

(0,π)
Q2 + CνD

(0,π)
P2

)]
. (B 5)

In many cases, this series expression may be reduced to a single term with enough
accuracy in a given region of the jet. This is used in the text to derive formal
expressions for the tangential electric field at the jet’s surface and for the wave speed
of perturbations.

† The summation sign can be also understood as an integral sign, for which expression (B 1)
becomes the Mellin inverse transform of Aν .
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Figure 4. Values of the normal electric field on the surface Eo
n as a function of z,

for different initial conditions at z = 1.75 mm.

Appendix C. Integration of the one-dimensional equations with ξ known
The first step is to identify an appropriate dependent variable to reduce system

(3.1)–(3.4) to a single first-order ordinary differential equation. Experience shows that
a good choice is to use Eo

n , for which equations (3.1)–(3.4) reduce to

dEo
n

dz
=

[
γ

ξ2
− 2(β − 1)εoI

2

π2K2ξ5
− 12(β − 1)Q2ε3o

π2K2ξ7
(Eo

n )
2 +

10(β − 1)Qε2oI

π2K2ξ6
Eo
n +

2ρQ2

π2ξ5

]
2Qε2oI(β − 1)

π2K2ξ5
−
[
εo +

4(β − 1)Q2ε3

π2K2ξ6

]
Eo
n

dξ

dz

+

2εoE
o
n

πξ3K

(
I − 2Qεo

ξ
Eo
n

)
2Qε2oI(β − 1)

π2K2ξ5
−
[
εo +

4(β − 1)Q2ε3

π2K2ξ6

]
Eo
n

. (C 1)

This equation is integrated from a certain z position (in this case z = 1.75 mm) in the
upstream direction. Several initial values of the normal electric field are tried, but the
actual solution is such a strong attractor for the ODE (integrating in the upstream
direction) that it is very soon reached, becoming almost independent of the initial
value employed (see figure 4).

REFERENCES

Bogy, D. B. 1981 Steady draw-down of a liquid jet under surface tension and gravity. J. Fluid Mech.
105, 157–176.

Cloupeau, M. 1994 Recipes for use of EHD spraying in cone–jet mode and notes on corona
discharge effects. J. Aerosol Sci. 25, 1143–1157.

Cloupeau, M. & Prunet-Foch, B. 1989 Electrostatic spraying of liquids in cone–jet mode. J.
Electrostatics 22, 135–159.

Cloupeau, M. & Prunet-Foch, B. 1990 Electrostatic spraying of liquids: main functioning modes.
J. Electrostatics 25, 165–184

Dunn, P. F. & Snarski, S. R. 1992 Droplet diameter, flux, and total current measurements in an
electrohydrodynamic spray. J. Appl. Phys. 71, 80–84.



Electrohydrodynamically driven capillary jets 187

Fernández de la Mora, J. & Loscertales, I. G. 1994 The current transmitted by highly conducting
Taylor cones. J. Fluid Mech. 260, 155–184.
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